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Causal directed acyclic graphical models (DAGs) are
powerful reasoning tools in the study and estimation
of cause and effect in scientific and socio-behavioral
phenomena. In domains where the cause and effect
structure is unknown, a key challenge in studying
causality with DAGs is learning the structure of causal
graphs directly from observational data. Traditional
approaches to causal structure discovery are catego-
rized as constraint-based or score-based approaches.
Score-based methods typically perform greedy search
over the space of models whereas constraint-based
methods iteratively prune and orient edges using struc-
tural and statistical constraints. However, both types
of approaches rely on heuristics that introduce false
positives and negatives.

Recently, causal structure discovery has been cast as
a MAX-SAT [1] problem, with d-separation crite-
ria enforcing constraints over assignments to causal
edges between variables, similar to constraint-based
methods. Jaakkola et al. [2] extend the constraint-
satisfaction viewpoint to constrained optimization and
formulate a linear program to solve the structure dis-
covery problem. In a similar vein, Schmidt et al. [3] use
L1-regularized optimization for local Markov blanket
identification.

Motivated by these MAX-SAT and optimization-based
approaches, we recognize that causal structure dis-
covery can also be viewed as a probabilistic inference
problem. We define distributions over model struc-
tures and infer the most likely structure given observa-
tions, replacing search over structures with optimiza-
tion. Among several advantages, joint probabilistic
models need not rely on early pruning or variable or-
derings, unlike standard constraint-based methods.

Formally, we have a set of n variables X = {X1 . . . Xn}
including latent variables and confounders, and m ob-
servations of them given by matrix O = {X1 . . .Xm}.
We assume that the data come from a true unknown
distribution defined by directed acyclic graph (DAG)
G = (X,E), where the joint probability over X is a

product of local conditional probabilities of each vari-
able given its parents.

In the causal structure inference problem, all possi-
ble edges between Xi and Xj correspond to random
variables Cij ∈ {0, 1} that are 1 if the directed edge
eij ∈ E, indicating that Xi causes Xj . Since purely
observational data does not suffice to identify a unique
true DAG, the output includes undirected edges that
indicate association, not causation. Thus, we have
random variables Aij ∈ {0, 1} that are 1 when Xi

and Xj are dependent. By performing conditional
independence tests I(Xi, Xj |{Xl . . . Xk}) with obser-
vations from O, we have observed variables Iij that
correspond to independence between Xi and Xj .

In the joint probabilistic causal structure inference
problem, we want to find

arg max
C,A

P (C11, . . . , Cnn, A11, . . . , Ann|Iij) (1)

the maximum a posteriori (MAP) assignment to all
random variables C,A based on a well-defined and
tractable joint probability distribution P . However
defining such a joint probability distribution is chal-
lenging. We would like it to encode the following in-
formation:

– D-separation and acyclicity constraints as in tra-
ditional constraint-based approaches such as PC
or FCI [5, 4]

– Flexible priors and domain knowledge to guide
optimization over likely DAG structures

– Information from multiple sources of evidence

– Background information about likely causes, tar-
gets and latent variables

The open problem that we pose is how to incorporate
all of this information in a unified and scalable proba-
bilistic framework.
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